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ABSTRACT

Four boron/aluminum aft pylon "boat tail" skins are designed and fabri-

cated and three of them are installed on three DC-10 aircraft for a

5-year flight service demonstration test. The fourth skin is retained

as a spare and all skins will be replaced at the end of the service

period by their titanium counterparts. Inspection and tests of the

exposed skins will establish the ability of the boron/aluminum composite

to withstand long time flight service conditions, which include exposures

to high temperatures, sonic fatigue, and flutter. The results of a pre-

liminary testing program yield room temperature and elevated temperature

data on the tension, compression, in-plane shear, interlaminar shear,

bolt bearing, and tension fatigue properties of the oriented 11 ply boron/

aluminum laminates and this information together with a stress analysis

are used to obtain FAA approval. Present state-of-the-art technology

(emphasizing low cost) was used in the fabrication of the skins and these

are installed on the existing titanium substructure with the same number of

the same sized mechanical fasteners as are used for the present titanium

skins. The boron/aluminum skins measure approximately 20.32 x 170.18cm

(8 x 67 inches) and are 2.032mm (0.080 inch) thick. Although maximum

weight saving was not sought, the 1.56Kg (3.45 lb) weight of the constant

thickness boron/aluminum skin is 26% less than the chemically milled

titanium skin.
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FOREWORD

This report was prepared by the Douglas Aircraft Company (DAC), Long Beach,

California of the McDonnell Douglas Corporation under the terms of contract

NAS1-13029. It is the final report on this program and covers the work that

was completed between 28 February and 31 October 1974. The program was

sponsored by the National Astronautics and Space Administration's Langley

Research Center, Hampton, Virginia. Dr.John G.Davis, Jr, was the technical

monitor.

The following Douglas Aircraft Company personnel were the principal con-

tributors to the program: Dr Steven Y.Elliott, technical director;

T.W.Gladhill and E.R.Wogulis, specimen and component design; A.Cominsky,

structural analysis; Dr T.L.Mackay, S.M.Weiman, R.W.Ross, R.L.Radecky,

M.L.Marcoux, Materials, QC, NDT, and testing; R.T.Hartunian, tooling and

manufacturing.

All numerical values used in measurements and calculations in this report

are expressed in International (SI) System of Units. Equivalent US Custom-

ary Units are given in parentheses following the SI values.
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BORON/ALUMINUM SKINS

FOR THE DC-10 AFT PYLON

By S.Y.ELLIOTT

Douglas Aircraft Company

Long Beach, California 90846

INTRODUCTION AND SUMMARY

Structural applications of advanced metal matrix composites have received
increasing attention during the past 10 years because of the excellent potential
in weight savings and increased strength and stiffness at elevated temperatures.
Most of these applications have been oriented toward military aircraft, jet
engines, or space vehicles. A few of these applications have reached the flight
test stage, but as yet no major structural component involving metal matrix
composite has been exposed to the long-term continuous flight service operation
that will be required for commercial aircraft.

An extended period of apprenticeship is highly desirable for every new structural
material for proper assessment of its service performance. Because the utiliza-
tion of commercial vehicles is consistently much greater than the military or
space vehicles, it is'possible to log considerably more flight hours on such a
vehicle in a given time period. Introduction of advanced metal matrix filamen-
tary composites into commercial aircraft would benefit military and space programs
as well, because the larger potential market would reduce the cost
of raw materials and the burden of other development and testing costs.

The selection of the DC-10 commercial aircraft was particularly appropriate
as it is representative of the new generation of wide-bodied aircraft which will
dominate the commercial scene for many years to come. The DC-10 is already in
service with 22 airlines and its use will become even more widespread in the near
future. Its immediate availability ensured a practical and realistic approach to
the program.

This report describes a flight demonstration development proaram which will
demonstrate the use of advanced metal matrix composite material. The program
objective Was to design, fabricate, and install boron/aluminum skins on three DC-10
aft pylon boat tail" assemblies for flight service evaluation (Figure 1). The
flight service demonstration of the cpmpleted assemblies commenced with the estab-
lishment of United Air Lines interface and after FAA approval.

The design philosophy was to substitute a 156kg(3.45 lb) boron/aluminum skin
for a 2.111 kg(4.65 lb) titanium skin, using the existing titanium substructure with
little alteration. Present state-of-the-art technology (emphasizing low cost) was
used in the fabrication of the skins rather than new approaches.



The existing internal riveted rib-type construction was used. This approach
resulted in a component which was as simple to fabricate and assemble as theexisting design.

After the program was started, a number of the DC-10O domestic carriers,
including United Air Lines, eliminated the use of the thrust reversers on the
#2 engines during the landing operation. Elimination of this operation meant
that the peak heating of the aft pylon boron/aluminum skin of up to 589K(600°F)
during each landing would not occur, so that part of the anticipated high
temperature operating environment would be different from that originally
anticipated.

The program consisted of a 6-month effort which involved the development
of the design, materials, processing, fabrication, and quality control verifi-
cation of three components, and static and fatigue tests of specimens. Flight
service demonstration testing of the three completed assemblies for a period
of five years is scheduled to start in July 1975 and has involved securing FAA
and commercial airline approval. A fourth boron/aluminum skin was fabricated
and delivered to NASA Langley Research Center for storage and possible instal-
lation at a later date.

DESIGN STUDIES, MATERIALS, PROCESSING, AND FABRICATION

This section contains the design criteria, and external loads of the boron/
aluminum panel for the DC-10O tail pylon ('Figure 1). Preliminary design studies
of the panel are discussed and the design and fabrication of the supporting
data specimens are described. The definition of.manufacturing procedures for
the specimens and the production panels concludes this task.

Design Criteria and Loads

The boron/aluminum panel for the DC-10O aft pylon is little more than a skin
fairing to reduce turbulence and aerodynamic drag. Four types of loads affect
the design of this panel, ie;

1. Aerodynamic loads act normal to the surface of the panel. Airplane
yaw conditions are critical (Reference 1).

2. Acoustic loads are maximum for the 3-engine ground run up at takeoff
thrust.

3. Temperature variations over the surface of the panel produce thermally
induced stresses. Maximum temperatures occur during landing with
thrust reverser operation (Figure 2). If the thrust reverser is not
used during landing, the maximum temperature during landing and up to
15 minutes after landing is between 339 and 367K (150 and 200'F).

4. Inertia loads are induced in the panel by flutter or resonance during
flight.

The panel itself is secondary structure and is considered failsafe as its
loss will in no way reduce the controllability of the aircraft.

The aerodynamic loads on the aft-engine-pylon trailing edge of the DC-10
for two design conditions are shown in Figure 3 (taken from Reference 1) and
summarized in Table 1.
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TABLE 1

AERODYNAMIC LOADS ON THE AFT-ENGINE-PYLON
TRAILING EDGE

Mach Air Speed Dynamic Rudder Fuselage Fuselage
CONDITION Number Pressure, Angle Angle of Yaw

V q Attack Angle
M KMEAS KEAS KPA PSF Sr F

I. Steady Side 0.33 407.66 220 7.85 164 13.50 20 130
Slip. Flap
Angle, %F=25c

2. Max Dynamic 0.78 796.79 430 29.93 625 4 0 3.6
Pressure ,2q  0.78 796.79 430 29.93 625

where q=V /2

NOTE: KMEAS = Kilometers per hour equivalent air speed

KEAS = Knots equivalent air speed

KPA = KiloPascals, or KiloNewtons per square meter

PSI = Pounds per square foot

The maximum ,q condition was also analyzed, but it resulted in less load than
the maximum q condition and is therefore not presented. The results for the low-
speed condition are presented to show the relative magnitude of loads between the
low-speed and the high-speed conditions.

The load differential acting on the pylon may be applied to any thrust con-
dition. (The load differential is considered independent of enginethrust level).

The aft-pylon load differentials are based on wind-tunnel test pressure data
obtained on a 4.7% scale model DC-10 (LB-241C) in the North American Rockwell
213.36 x 335.28m (7 x 11 foot) low-speed wing tunnel (NAL 574), and on a 3.25% scale
model DC-10 (LB-244B) in the Cornell Aeronautical Laboratory high-speed wind tunnel.
(CAL820-023).

The direction of loads is as viewed from the rear. Positive sr is trailing
edge left and positive 6 is airplane nose left. The loads may be applied uniformly
over the aft-engine-nacelle pylon from FS2340 aft.

Limit aerodynamic loads will be multiplied by 1.5 to obtain design ultimate
airloads.

The acoustic loading in the center portion of the boron/aluminum panel is
shown in Figure 4.

The variation in skin temperature during landing with reverse thrust is shown
in Figure 5. After the program was started, a number of the DC-10 domestic carriers,
including United Air Lines, eliminated the use of the thrust reversers on the #2
engines during the landing operation. Elimination of this operation meant that the
peak heating of the aft pylon boron/aluminum skin of up to 589K(6000F) during
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each landing would not occur, so that part of the anticipated high temperature
operating environment would be different from that originally anticipated.
However, it has been determined that after each engine shutdown the rising hot
air from the #2 engine heats the aft pylon skin to a temperature of up to 367K
(200 0F) for a period of about 15 minutes. On a hot day it is estimated that the
temperature from this engine shutdown condition may reach 395K(2500F).

Preliminary Design

The design of the lower skin of the aft pylon was directed toward complete
interchangeability with the present metal structure and toward certification as a
structural component suitable for use on a commercial aircraft ,in regular passenger
carrying operations. The internal reinforcing substructure was not to be changed
and only the outer skin segment would be changed from the present titanium to
aluminum matrix/boron filament composite material. Because the titanium skin is
2.032mm (0.080 inch) thick, the number of boron filament layers was thereby estab-
lished to be 11 (ie; 11 layers x 1.829mm/layer (0.0072 in/layer) = 2.012mm (0.0792

in)). The boron filaments were 1.422mm(0.0056 inch) in diameter and were required
to meet the McDonnell Douglas specification (Reference 2). The aluminum matrix
alloy was 6061. The finished sheet was furnished in the as-fabricated condition
and required to meet the specification listed in Appendix A.

The present 2.032mm (0.080 inch) annealed skin measures approximately 20.32 x
170.18cm (8 x 67 inches) as shown in Figure 1 and has a slight curvature. Approx-
imately 50 percent of the area of this skin is now chemically milled to a 1.016mm
(0.04 inch) thickness leaving a scalloped doubler arrangement around its perimeter.
For aerodynamic loading purposes, the 1.016mm(0.040 inch) thickness would have
been adequate, but the 2.032mm(0.080 inch) perimeter thickness had to be added to
prevent edge cracking as a result of a flutter condition and to provide sufficient
thickness for the countersunk heads of monel rivet fasteners. Because it was not
the objective of this program to demonstrate maximum weight savings, and because
a similar scalloping of the boron/aluminum skin would have increased its fabricat-
ing cost substantially, it was left as a solid 2.032mm (0.080 inch) thick skin.
Nevertheless, because of its lower density, its total weight was 26% less than the
chemically milled titanium skin. It was proposed that a rectangular boron/aluminum
skin slightly larger than 20.32 x 170.18 cm (8 x 67 inches) would be fabricated by
a selected manufacturer and then machined to exact size.

The present mechanical fasteners include 33 titanium screws 4.762mm (3/16 inch
diameter) flush tri-wing head along the top surface and 77 monel rivets 3.175,
3.972, and 4.762mm (1/8, 5/32, and 3/16 inch) flush head along the bottom and sides.
The heads of these fasteners are countersunk for reduction of aerodynamic drag.
Recause drilling andv countersnking holes in boron/aluminum is difficult and expen-
sive, it was determined to eliminate the countersinks in the boron/aluminum by
adding a thin external titanium strip along the bottom of the panel to contain the
required countersinks and by using protruding fasteners with low head profiles
across the top and down the sides. Preliminary riveting tests of drilled boron/
aluminum strips revealed that the diametral growth of the required rivets when
they were impacted was sufficient to split the composite. For this reason, rivets
were completely eliminated and removable Hi-Lok screw fasteners were substituted.
These threaded type mechanical fasteners have the additional advantage that when
the boron/aluminum skins are replaced by the standard titanium skins after the 5-
year flight service program, installation will be facilitated by elimination of
drilling out monel rivets.

4



In another set of preliminary tests, it was determined that the fastener
pull-out strength of boron/aluminum composite formed from 00 -90' oriented plies
alone might be marginal for the application and, of course, much less than the
similar fastener strength of titanium sheet. The three potential methods of
increasing this property in boron/aluminum composite are: incorporating layers
of thin titanium foils among the 00-900 plies, incorporating layers of thin
stainless steel woven screens, and incorporating +450 plies of boron filament
layers among the 00-900 plies. As a result of some preliminary laboratory tests
it was determined that the third method was the. most suitable and required no
new fabricating developments or risks.

With the number of plies established at 11 and with the filament orienta-
tions established as 0', 90', +450, the only remaining requirement was to select
an orientation arrangement that was symmetrical about the neutral axis and
which did not place two identically oriented layers together. This latter
requirement was considered to be important from the standpoint of preventing
fiber nesting and hence, permitting aluminum matrix squeeze out and possibly
leading to undesirable fiber contact. The final fiber orientation selected as
a result of the preliminary design effort therefore was:

900, 45', 900, 00, -450, 0O, -45, 00, 900, 450, 900

where the 00 direction was the long direction of the skin. The four 900 plies
at the outside of this composite arrangement insured that the skin would have
greater bending strength across the short direction of the pressure loaded plate
and the remaining 00 and +450 layers were primarily needed to insure adequate
fastener pull-out strengthin all directions.

Specimen Design

The demonstration test specimens, consisting of tension, compression, rail
shear, interlaminar shear, bolt shear, and tensile fatigue specimens, were
designed to help demonstrate the suitability of the boron/aluminum skin for its
application to the DC-10 aft pylon.

1. The tension specimen (Z4941424), a modified IITRI design shown in
Figure 6, used (as did all of the test specimens) a ply layup and
thickness identical to the boron/aluminum aft pylon skin. Fiberglass
phenolic was used for the tabs because it had good matching of thermal
coefficients with boron/aluminum which assured a strain-free bond and
a low modulus which reduced the tendency of the tabs to create a
stress concentration in the grip area. Scarfing the tabs reduced peel
stresses at the tip of the tab. The room temperature specimens were
bonded with Hysol EA951, a "ductile" adhesive which allowed a more
even distribution of shear stress in the bond than that of a "brittle"
adhesive. Because ductile adhesives lose strength radically at tem-
peratures above 367K(2000 F), 'a high temperature adhesive, HT424,
was chosen for the 505K (450°F) tests.

2. The honeycomb sandwich beam type of compression :test (Figure 7)
was chosen because it provided support for the specimen in compression
and therefore helped insure a compression failure only instead of the
buckling or brooming failure more likely to be encountered in an edge-
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loaded compression test. The specimen had two different core types.
The outer core was dense to support the high shear loads introduced
by the four point loading, whereas the inner core which experienced
no shear was lighter to lessen the interaction between the core and
the boron/aluminum in the test region. The tension side of the beam
was a steel sheet which minimized beam deflections when a high com-
pressive load was developed in the boron/aluminum. The room tempera-
ture specimens were bonded with Metlbond 329 because the shear
stresses in the bond line were already uniform so the ductility of
Hysol EA951 was unnecessary. HT424 was used to bond the high tempera-
ture test specimens.

3. The rail shear specimen (Figure 8) was chosen for obtaining
shear data because it used standard 2.032mm (0.080 inch) flat boron/
aluminum sheet and produced relatively pure shear in the test section.
The rails were tapered to provide uniform shear introduction into the
specimen and were bonded to the boron/aluminum with Hysol EA951 for
the room temperature tests and with HT424 for the 505K(450°F) tests.

4. The length of the interlaminar shear specimen (Figure 9) was
chosen to accommodate a 8.128mm (0.32 inch) test span (determined from
a span-to-depth ratio of 4 as specified in ASTM (D2344-72) for specimens
with filament moduli greater than 31.05kPa (4.5 x 10 psi) with an over-
hang of 5.08mm (0.2 inch) on both ends of the span.

5. The bolt shear specimen (Figure 10) was designed to simulate
the aft pylon where the boron/aluminum skin is fastened to 1.016mm
(0.040 inch) thick titanium ribs by bolts--principally of 3.969 and
4. 762mm (5/32 and 3/16 inch) diameters. The specimen made optimum use
of the boron/aluminum test strip, testing it twice. First the specimen
was pulled by both titanium strips until one joint failed, then the
remaining joint was tested by gripping the failed end of the boron/
aluminum. Thus, two data points were obtained from one specimen.

6. A center hole tensile fatigue specimen (Figure 1l)was chosen
to enable comparison of its fatigue data with similar existing data for
titanium. Holes were punched into the specimens to study their effect
on the strength and fatigue life of the laminate. This was of interest
because the boron/aluminum aft pylon skin had many fastener holes and
was in a fatigue environment. Steel tabs were chosen for strength.
The hole through the steel tabs accommodated a pin which transferred
the fatigue loading from the testing machine to the specimen. Hysol
EA951 was used so that the shear in the bond would be distributed more
evenly.

Specimen Fabrication

The selection of a fabricator for the boron/aluminum composite panels for the
specimens and skins was based on considerations of quality, capability, cost, and
confidence. The company selected was Hamilton Standard of Windsor Locks, Connecti-
cut, who are represented on the West coast by DWA (Dolowy Webb Associates) Compo-
site Specialties, Inc. The purchase of all material for the specimen test program
was based on a material procurement specification reproduced in Appendix A. The
quality of the panels fabricated and received was determined by means of tensile
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tests of specimens cut from the edges of each panel in both the 00 and 90'
directions and by X-ray and C-scan type NDT inspections. All materials used
for test specimens complied with the requirements of Appendix A.

When a new material is proposed for use on a commercial transport, FAA
certification must be secured even though the material is only intended for
a temporary flight test. Receipt of such certification involves the following
steps:

1. A report is submitted to the local FAA office summarizing the steps
which will be followed in securing FAA certification of the flight
test. It contains a specimen test plan.

2. A material specification document is prepared and submitted to the
FAA which is used to control the quality of the incoming materials.

3. Drawings of the qualification specimens which will be used to generate
the required design data are prepared and submitted to the FAA.

4. A Testing and Development document is prepared by the Structural Design
'Engineering department and submitted to the Testing department author-
izing the preparation of specimens and the conduction of the design
data tests in accordance with the test plan.

5. The Testing department prepares a Development Release Order authorizing
the Planning department to prepare the necessary planning papers.

6. The Planning department prepares a series,of Fabricating Orders for
each of the types of specimens describing in detail the sequential
operations to be performed by each department in their preparation
and testing.

7. As the specimens are fabricated, inspection reports guaranteeing that
the specimens comply with the drawings and the Fabrication Orders are
signed and submitted to the FAA.

8. As the specimens are tested, FAA inspectors and approved witnesses
check the test machines, jigs, and procedures. Copies of all raw
test data generated are submitted to the FAA.

9. When all the tests are completed, a report summarizing the results
and analyzing their significance -in the establishment of the adequacy
of the material is prepared and submitted to the FAA.

Specimen fabrication primarily involved cutting the large panels into the
proper sized rectangular strips using a rotating diamond coated wheel, Figure 12,
punching holes as required into the composite with a hand operated punch tool,
bonding reinforcing tabs or honeycombcores with selected adhesives as described
in the specimen drawings, and finally bonding strain gages to the surfaces of
the test specimens as required. Each of these operations was performed in
accordance with written procedural directions. No unsolvable problems were
encountered and all specimens were eventually successfully completed and approved
for testing.
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Definition of Manufacturing Procedures

A specification describing the cutting of boron/aluminum and the preparation
of holes was written, approved, and published. Its title is DPS 3.67-67, Hole
Preparation and Trimming of Boron/Aluminum, and a copy is included in Appendix B.
Preliminary tests determined that the most suitable hole preparation method was

punching followed by sufficient reaming to enlarge the holes to the exact desired
size, if necessary. Figures 13 through 16, for example, show enlargements of
four holes through boron/aluminum skins produced by four different techniques,ie;

Figure 13 - Hole produced by 0.635cm (0.250 inch) diameter steel drill

Figure 14 - Hole produced by 0.566cm (0.223 inch) diameter steel punch
Figure 15 - Hole produced by 0.566cm (0.223 inch) diameter steel punch

followed by 0.579cm (0.228 inch) diameter steel ream

Figure 16 - Hole produced by 0.635cm (0.250 inch) diameter steel punch
followed by 0.640cm (0.252 inch) diameter diamond ream

Of these four techniques, the first involving the steel drill alone showed
unacceptable edge roughness, but the other three techniques all produced approxi-

mately similar quality holes. It was concluded, therefore, that since punching
alone was the least expensive, it would be the preferred method and that additional
reaming with either steel or diamond coated reamers would be performed, if needed,
to enlarge the holes to the exact desired size.

It was also determined by laboratory testing that the boron fibers in boron/
aluminum are attacked by the standard anodizing process that is usually employed
to provide corrosion protection to aluminum in exterior structural applications.
For this application, therefore, the alodine (chromate conversion) process, which
does not attack boron fibers was selected as the boron/aluminum surface treatment.
In addition, the inner surface of the skin would have to be epoxy primed and all
mechanical fasteners installed with wet sealant.

COMPONENT DESIGN AND ANALYSIS

This section contains a description of the component design and a stress analy-
sis of the boron/aluminum skin. The result of the design effort was a complete
engineering working drawing which replaced the present drawing of the titanium
counterpart. The stress analysis followed from the Design Criteria and Loads and
was also furnished to the FAA for their certification.

Component Design

The boron/aluminum skin panel was designed to fulfill the same requirements as
its titanium counterpart. It had the same external dimensions, including the same
hole spacings and edge distances, differing only in that the boron/aluminum was
not chemically milled. The 2.032mm (0.080 inch) thick annealed titanium sheet was
chemically milled to 1.016mm (0.040 inch) over 50% of its area, leaving the effect
of a scalloped doubler around its perimeter. The weight of the chemically milled
titanium sheet was 2.111Kg (4.65 pounds), ie; 0.545Kg (1.20 pounds) more than the
boron/aluminum skin, 1.566 Kg (3.45 pounds),even though the boron/aluminum skin
occupied a larger, unmilled volume. Hence the weight saving provided in the sub-
stitution of the boron/aluminum skin for the titanium skin was 26%. The Rework
Drawing (Dwg AVB7129) showing the installation of the boron/aluminum skin is
shown in Figure 17.
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The titanium skin was fastened to the pylon by a variety of fasteners,
including bucked, flush-head rivets and flush-head bolts. It was undesirable
to use bucked rivets in the boron/aluminum design because they expand and strain
their holes, and promote crack formation in the boron/aluminum.

Flush-head fasteners were undesirable because their bearing area for bolt
shear is less than that available from protruding head fasteners. Where flush-
head bolts were used across the top of the titanium skin, pan-head bolts
were substituted. Where flush, bucked rivets were used along the forward and
aft edges of the titanium skin, protruding head, clearance fit Hi-Loks were
substituted. Where flush, bucked rivets held the titanium skin to the rib
beneath the seal, flush Hi-Loks, sunk into a titanium strip were substituted.
The flush-head bolts attaching the seal retainers remained unchanged because
they were countersunk into the retainers only. The result of these fastener
substitutions was to eliminate countersinks in the boron/aluminum and bucked
rivets from the design.

The selected orientation of plies in the boron/aluminum skin was (90', 450,
90o,0o,-45o,00;45o,0,90o,450,900). The four plies in the 90' direction provided
strength across the width of the skin panel and the ±45' plies provided a higher
bolt shear strength. The total number of plies (11) was dictated by the thickness
of the titanium panel 2.032mm (0.080 inch) which was replaced since it was neces-
sary that the boron/aluminum panel be flush with the surrounding structure.

The processing specification (DPS 3.67-67) referenced on the drawing described
the cutting and hole fabrication processes for the boron/aluminum skin and is the
same as Appendix B of this report.

Stress Analysis

The boron/aluminum composite panel was analyzed as a flat panel, acted upon
by normal air pressure. The critical loads for the aft-engine-pylon trailing
edge of the DC-10 occur for a maximum dynamic pressure, q, yaw condition desig-
nated as design condition number 2 in Figure 3. The question of satisfactory
strength for acoustic loads and adequacy for flutter or resonance during flight
was approached by determining that the boron/aluminum panel was stiffer than the
original titanium panel (which has demonstrated satisfactory service for these
considerations).

According to the lowest curve shown on the critical design condition 2 of
Figure 3 (ie; Pylon Left Side corresponding to Fuselage Station 2363), the maxi-A
mum limit air pressure is 3.59kPa (10.52 asi). Hence, the maximum ultimate
air pressure is 1.5 x 3.59 = 5.38kPa (1.5 x 0.52 = 0.78 psi).

Although the left skin shown in Figure 1 was not rectangular, its average
dimensions were approximated by a 147.32 x 20.32cm (58 x 8 inch) rectangular plate
with a thickness of 2.032mm (0.080 inch). Assuming all edges simply supported
the formula for the maximum
bending stress in the center
of a rectangular plate
subjected to a normal b = 20.32cm (8 in)
pressure is taken from page
203 of Reference 3 for
bending around the 147.32cm 58
horizontal axis.

t = 2.032mm (0.080 in)
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0.75wb
2

b = t 2 (1 + 1.61 a(3) (

where w = normal pressure, Pa (psi)

b = shorter dimension, cm (in)

a = longer dimension, cm (in)

cv = b/a = 20.32/147.32=(8/58) = 0.138

Substituting appropriate values:

S b -0.75 x 5.378 x (20.32) 40.17 MPa (5825 psi)
(0.2032)2[1 + 1.61(0.138)3]

From Reference 4 the formula for bending around the vertical axis is:

S wb2(0.225 + 0.382c<2 - 0.320 a3) (2)
a 2

5.378(20.32)2(0.225 + 0.382(0.138)2 - 0.320(0.138)3)

(0.2032)2

= 12.45MPa (1805 psi)

The other critical static stress condition checked was the magnitude of the skin
stress in the vicinity of the mechanical fasteners. For this case the maximum
bending stress at the center of the long edge of a rectangular plate with fixed
edges and subjected to a normal air pressure is given by the following formula
on page 205 of Reference 3:

0.5wb2  (3)

= t 2 (1 + 0.623c<6)

0.5(5.378)(20.32)2 = 26.89 MPa (3900 psi)

(0.2032)2(1 + 0.623 (0.138)6)

This is the stress that would exist if there were no fastener holes at the edge of
the plate, but since there are 6.35mm (1/4 inch) diameter attachment holes at a
pitch of 2.54cm (1 inch),the net bending stress is:

Sb  = 26,890 x 2.54 - 0.635 = 35.85 MPa (5200 psi)

Assuming a stress concentration factor for the hole of 3.0, the design stress was:

Design Sb  = 3.0 x 35,850 = 107.55 MPa (15,600 psi)

10



The stiffness of the boron/aluminum skin is calculated as follows:

-450 900 450

Section A-A 
./

000000
000<> 0 0.0927cm(0.0365 in)

d 0 000 0 0.0749cm(0.0295 in)

___ _ j 0.0572cm(0.0225 in)

cc>0 0 0 c> L> .0394cm(0.0155 in)
NA 0.0216cm(0.0085 in)

000000

TION GPa PSI cm in GN lb

900 221 32 x 106 0.0927 0.0365 1.896 42,600

450 124 18.0 0.0749 0.0295 0.696 15,700

900 221 32 0.0572 0.0225 0.722 16,200

00 135 19.5 0.0394 0.0155 0.209 4,690

-450 124 18.0 0.0216 0.0085 0.058 1,300

00 135 19.5 0 0 0 0

-450 124 18.0 -0.0216 .0.0085 0.058 1,300

00 135 19.5 -0.0394 -0.0155 0.209 4,690

900 221 32 -0.0572 -0.0225 0.722 16,200.

450 124 18 -0.0749 0.0295 0.696 15,700

900 221 32 -0.0927 -0.0365 1.896 42,600

_ 7.162 160,980

Panel thickness = 0.2032cm(0.080 in)

Thickness per ply, t = 0.2032 + 11 = 0.0185cm(0.0073 in)

Weight, WB/A = ot = 2.72 gr/cm3(0.2032cm) = 0.553 gr/cm2(0.00785 lb/in 2

Stiffness of boron/aluminum skin,(EI)B/A = t (Ed2) = 0.0185(7.162)

= 0.001323GNm(1171 lb in)



According to Appendix A the target ultimate tensile strength of the boron/aluminum
composite skin in the 90' orientation is 503.3MPa(73,000 psi). Assuming a
conservative 413,700MPa (60,000 psi) value for design purposes, the margin of
safety is:

Ftu 1 413.7 (4)
MS = - 1 = -- 1= 2.85 (4)

which is, of course, very adequate.

The adequacy of the boron/aluminum composite skin design for the flutter con-
dition was determined by comparing its stiffness with that of the present chemically
milled titanium skin shown below:

4.7cm(1.85 in) 2.41cm(0.95 in)

18.8cm(7.4 in) 9 4cm(3.7 in) 14cm(5.5 in)

4.7cm(l.85 in) 2.'41cm(0.95 in)

0.203cm(0.080 in) 0.1016cm(0.040 in)

Average thickness, t = -8.8 [18.8 x 0.1016 + 2 x 2.41 x 0.1016 + (4.7 - 2.41)0.101.6]

18.8 [1.91 + 0.49 + 0.23]

= 0.14cm(0.0551 inch)

Weight, wT =,Ot = 4.53gr/cm3 x 0.14cm = 0.634gr/cm2(0.009 lb/in 2)

Modulus of elasticity for titanium, E = 110.3GPa(16 x 106 psi)

Moment of Inertia, IT  (t)3  (014)3 = 2.286 x 10-4cm4/cm(13.95 x 10-6 in4/in)
Moment of Inertia, T

Stiffness of titanium skin (EI) T = 110.3GPa x 2.286 x 10- 4cm3

= 0.000252GNm(223.5 lb in)

The formula for natural frequency of a.beam on two supports is given on page 379 of
Reference 4 as:

fi = K E (5)
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where K = Constant

g = 980cm/sec2(386 in/sec 2 )

E = Young's modulus, Pa (psi)

I = Moment of Inertia,cm4(in 4 )
w = Weight of a Unit Length of Beam,Kg/in(lb/in)

L = Beam Length, cm (in)

For equivalent resistance to acoustic fatigue or panel flutter, the boron/
aluminum panel should have an equal or greater natural frequency than the original
titanium panel.

fi (titanium) = fi (boron/aluminum)

K gET K gEB-A I-A

ET IT EB-AI B-A
4 - 4

TLT B-ALB-A

minimum required stiffness of boron/aluminum skin is:

L4

min reqd (E)B A  = WB-A . -A . (EI)T
4

WT LT

0.553 x 18.8 4
0.634 x 18.8 x 0.000252

= .000220GNm(195 lb in)

Since the calculated actual stiffness of the boron/aluminum skin is

actual (EI)BA = 0.001323GNm(ll71 lb in)

the stiffness of boron/aluminum is approximately six times greater than required and
hence, acoustic fatigue and/or panel flutter will not-be a problem.
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DEMONSTRATION TESTS

The demonstration of the suitability of the boron/aluminum composite skin

for the aft-pylon application relied primarily on specimen testing combined with

the stress analysis. The specific types and numbers of tests and specimens are

summarized in Table 2. These tests primarily involved tension, rail shear, inter-

laminar shear, and bolt bearing tests of specimens under various environments.

In addition to these static type tests, dynamic tests were also conducted to

determine tension fatigue properties of boron/aluminum composite specimens contain-

ing center holes. Metallographic and scanning electron microscope tests were made

on selected failed specimens to study their mode of failure. All details describ-

ing the proposed tests were first summarized in a TEST PLAN, Reference 5, which
was furnished to the FAA. The results of the tests were used to establish the
initial stress levels and also to establish thestrength requirements for the

material specification.

Tension Tests

The calculated tensile strengths of all tension specimens tested are summar-

ized in Table 3. The 2.54cm (1-inch) wide by 25.4cm (10-inch) long parallel edge

composite strips had all been reinforced at the ends by bonded 1.524mm (0.06 inch)

thick and 7.62cm (3-inch) lonq fiberalass end tabs with a 2.54cm (1 inch) scarfed

edge adjoining the test section. This method of protection from grip damage is
quite satisfactory because in all but four tests the failures were well within
the 10.16cm (4 inch) gage length section. Even in those four specimens where
the failures were at, or near, the edge the calculated values were quite high.
Comparing the average room temperature tensile strength of 565MPa (81,930 psi)
with the 555MPa (80,562 psi) average obtained at room temperature after 1000
hours aging at 505K(450 F) -and the 602MPa (87,300 psi) average obtained at 505K
(450oF), it is seen that not only is very little strength lost-by this material
from long term aging at 505K(4500F), but it even:becomes stronger when heated
briefly at 505K(4500F) and then tested. The significance of this observation
coupled with the test results of the interlaminar shear specimens is that al-
though the aluminum matrix is softened and slightly weakened by 505K(450°F)
temperature, it is still adequately strong to maintain laminate continuity and
enable the unaffected boron filaments to predominately support tensile loads.
Indeed, the increased ductility (and hence toughness) of the aluminum at 505K
(450°F) may even be beneficial in reducing local stress concentrations or residual
stresses and thereby lead to some tensile strength improvement at moderately
elevated temperatures.

Stress-strain curves of tension specimens tested at room temperature are shown
in Figures 18 through 28. Figures 18 through 21 were plotted with strain data
obtained from strain gages, whereas Figures 23 through 28 were obtained using an
extensometer. As a check on the uniformity of loading by the tension grips, the
first strain gaged specimen had longitudinal strain gages on opposite faces.
Figure 19 indicated that both gages gave nearly identical readings which demon-
strated that the specimens were being loaded axially. In addition, to obtain
Poisson's ratio, the first three specimens had transverse strain gages as well as
longitudinal gages. Because extensometers are too delicate to survive the shock,
they must be removed prior to failure of the specimen so the final portion of the
stress-strain history is not measured. The dotted portions of the stress-strain
curves of Figures 22 through 28, therefore indicate they have been obtained by
extrapolation.
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TABLE 2

QUALIFICATION AND DEMONSTRATION TESTS

TEST

TYPE OF TEST TEMP NO. OF
( K) SPECIMENS MEASURED DATA

TENSION -STRAIN GAGES RT 10 FtU Et , V,
2.54cm(1 in) tu

_. 505 10 F
Ftu

RT after

S 25.4cm (10 in) at 505 Ftu

COMPRESSION STRAIN GAGES RT 10 Fcu, Ec , , ex
2.54cm(l in) 55.88cm(22 in)--- 50 & 0S505 10 Fcu

__ _Al_ _ RT after
1 U'U114.1ai, i ' -It9M1000 hrs

A at 505 10 Fc

IN-PLANE SHEAR STRAIN GAGES RT 10 F

6.07cm x 7.62 cm 367 tosu
2.4 in x 3 in)

505 10 Fsu
RT after
1000 hrs 10 F
at 505 su

INTERLAMINAR SHEAR -RT 10 F

0.635 x 3.048cm 505 10 Fsu
(0.25 x 1.2 in) RT after

1000 hrs 10 Fsu
at 505

BOLT SHEARING RT 20 P
2.85cm x 10. 16cm9 U

(1.12 in x 4 in) "=' - "T
2 Configurations

METALLOGRAPHY 3 BOND QUALITY AND
UNIFORMITY, FILAMENT
DISTRIBUTION AND
DEGRADATION

SCANNING ELECTRON FRACTO- 5 BOND QUALITY
GRAPHY(TO BE PERFORMED ON
SELECTED FAILED SPECIMENS)

TENSION .RT 10 CYCLES TO FAILURE
FATIGUE
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TABLE 3

RESULTS OF TENSION TESTS AT ROOM TEMPERATURE 505K(4500F) AND
AT ROOM TEMPERATURE AFTER 1000 HOURS AGING AT 505K (4500 F)

(BORON/ALUMINUM-900 ,450,900,00,-450,00,-450,00,90°,450,900)

ULTIMATE TENSILE STRENGTH

AT ROOM AT ROOM TEMP AFTER
TEMP AT 505K (4500F) 1000 HRS AT 505K (4500 F)

SPEC SPEC SPEC
NO MPa PSI NO MPa PSI NO MPa PSI

11 470.9 68,296 1 557.5 80,856 21 540.8 78,438

12 628.4 91,136 2 606.1 87,905 22 599.0 86,875

13 635.4 92,158 3 632.9 91.791 23 554.4 80,413

14 629.9 91,364 4 628.6 91,165 24 576.0 83,543*

15 623.7 90,463 5 626.8 90,909 25 563.1 81,665

16 546.6 79,276 6 631.2 91,551 26 555.9 80,625

17 528.7 76,683 7 623.9 90,486 27 529.9 76,851

18 495.5 71,859* 8/ 560.9 81,351 28 532.7 77,261*

19 517.8 75,094** 9 566.2 82,115 29 549.2 79,660

20 572.1 82,974 10 585.3 84,893 30 553.6 80,290

AVG 564.9 81,930 601.9 87,302. 555.5 80,562

STD
pEV 61.7 8,950 1 1 31.4 4,550 20.6 2,979

NOTE: * Failure occurred at edge of scarfed end tab
** Failure occurred at 3.18mm (1/8 in) within scarfed

end tab
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In testing Specimen 11 (Figure 18) the grips (which consisted of thick
serrated steel plates clamped against the specimen with six bolts) slipped
and the specimen had to be unloaded and the plate bolts tightened. This
happened twice but the third time the bolts and grip plates held and the
specimen was successfully tested to failure. When the stress-strain curve
of Figure 18 was plotted however, it was observed that each time the speci-
ment had been unloaded it retained a "permanent set" which was equal to about
one-third of the maximum strain that had been reached prior to unloading.
This behavior was checked again with Specimen 15 (Figure 23), Specimen 16
(Figure 24), Specimen 17 (Figure 25), and Specimen 18 (Figure 26). Finally
in the case of Specimen 20 (Figure 28) the grips slipped once again and had
to be tightened before the specimen could be loaded to failure. In these
six specimens, the respective strains from which the specimens were unloaded
varied from about 10 to 95% of the maximum strain at failure, but in each
case the "permanent set" was approximately one-third of the strain prior to
unloading.

Stress-strain curves of tension specimens tested at room temperature
after 1000 hours aging at 505K (4500 F) are shown in Figures 29 through 38.
Strain readings were all obtained by means of an extensometer and therefore
dotted line extensions of each curve indicate the approximate extrapolations
to failure. As in the case of the previous room temperature tension tests,
six of the specimens were unloaded prior to failure and then loaded again to
determine whether the magnitude of the "permanent set" had been effected by
the aging, ie; Specimen 23 (Figure 31), Specimen 24 (Figure 32), Specimen 25
(Figure 33), Specimen 26 (Figure 34), Specimen 27 (Figure 35), and Specimen
28 (Figure 36). In this group of six specimens each unloading occurred when
the tensile stress reached 345MPA (50,000 psi) and the corresponding
"permanent set" was consistently about one-quarter of the maximum strain
reached prior to unloading. Because these specimens had not been unloaded
completely (about 414MPa (6000 psi). stress remaining) the curves had to be
extrapolated to zero stress to obtain an approximate strain at zero stress
reading. Nevertheless, the smaller ratio of "permanent set" indicated that
the 1000 hours aging at 505K (4500 F) may have metallurgically effected the
aluminum matrix and increased its resistance to incurring "permanent set".

Additional observation of the stress-strain curves of Figures 18 through
38 indicated that all curves followed a characteristic bilinear pattern with
an initial slope or "primary modulus" which was relatively brief but about
twice as large as the much more extensive subsequent slope or "secondary
modulus". As illustrated in the schematic, Figure 39, when the specimen was
unloaded and then reloaded prior to failure, the reloading curve essentially
paralleled the higher initial slope up to the unloading point and then con-
tinued along the lower second slope. Although it is primarily speculative,
a plausible explanation of this behavior has been devised as follows: "When
boron aluminum composite with a multiple ply orientation including 00, 90',
and +45' layers is cooled from its bonding temperature, the greater coefficient
of contraction of the aluminum matrix leads to a residual stress condition where
the compression in the 00 boron fibers is balanced by tension in the matrix.
Upon initial loading,a complete rearrangement of residual and imposed stresses
takes place with the boron compressive stresses reducing to zero and the alumi-
num tensile stresses rising higher. With the aluminum supporting an appreci-
able proportion of the load, the primary modulus is relatively high but because
of the strain magnification in the matrix of the 900 fibers and because of the
rotation of the +45' fibers in the direction of the tensile load, gradual micro-
cracking and slipping of the matrix occurs which cannot be reversed completely
when the specimen is unloaded. After the knee of the curve is passed, the
aluminum matrix, which is now plastic, no longer picks up additional load and
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the secondary slope or modulus is controlled primarily by the elastic elongation
of the boron alone. If the specimen is unloaded prior to failure, it will
exhibit a permanent set which indicates that the residual stresses are now
reversed and the tension in the fibers is balanced by compression in the matrix.
Furthermore, when the specimen is reloaded, the matrix contributes to support-
ing the load as long as some of its compression remains and hence the primary
slope region is repeated and increased. But when the same stress is reached
from which the specimen was previously unloaded, then the residual compression
in the aluminum is completely reduced and again, the aluminum yields plastically,
microcracks and 450 fiber alignment continue, and the stress-strain curve
proceeds along the lower secondary modulus slope".

The primary and secondary slopes or moduli taken from the tensile speci-
mens shown in Figures 18 through 38, together with the maximum strains obtained
either from actual strain gage readings or extrapolated data are summarized in
Table 4. It can be seen that the primary modulus is consistently about twice
as high as the secondary modulus and that the ranges and averages of both moduli
as well as the strain at failure was about the same in both groups of specimens.
It was concluded that the 1000 hours aging at 505K (450oF), had no appreciable
effect on the moduli or the maximum strains of the boron aluminum composite.

To obtain information on the Poisson's ratio of boron/aluminum composites
tested in tension, both sides of specimen 11 had been instrumented with longitu-
dinal and lateral strain gages. As previously discussed, specimen 11 slipped
twice in the grips during the testing so it was loaded and unloaded three times
as shown in Figure 18. During each run the calculated ratio of the lateral and
longitudinal strain gage readings (ie; Poisson's ratio) varied from run to run,
from one side to the other side and from the beginning of the run to the end of
the run. These data have been plotted on Figures 40 and 41. Although there was
considerable scatter in the calculated results, the trend that appeared was that
during initial loading, the Poisson's ratio remained approximately constant at a
value of about 0.20 as stress increased. Upon unloading and reloading, the
rearrangement of the residual stress distribution in some way effected this
trend so the Poisson's ratio started low and increased asymptotically to the
same value of about 0.20 as stress increased. As the stresses at which unloading
increased, the initial value of Poisson's ratio decreased proportionally. Speci-
mens 12 and 13 were instrumented with longitudinal and lateral strain gages
(on one side only) and the calculated Poisson's ratio curves are shown in
Figures 42 and 43. Again there was considerable scatter but the results were
consistent with the first loading of Specimen 11 in that Poisson's ratio did not
vary much from the 0.20 as stress increased.
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TABLE 4

MODULUS OF ELASTICITY AND STRAIN AT FAILURE FROM
TENSION TESTS AT ROOM TEMPERATURE AND AT ROOM
TEMPERATURE AFTER AGING 1000 HOURS AT 505K(450°F)

(BORON/ALUMINUM-900,450,900,00, -45,00,
-450,0°,900,450,900)

(SPECIMENS LOADED IN 900 DIRECTION)

AGING AT PRIMARY SECONDARY STRAIN AT
SPEC 505 MODULUS MODULUS FAIURE
NO. (4500F)

GN PSI GN PSIHOURS 2
m m

11 0 151.0 21.9x10 6  79.3 11.5x10 6  0.0052

12 0 153.8 22.3 89.6 13.0 0.0059

13 0 129.6 18.8 80.0 11.6 0.0072

14 0 193.7 28.1 88.3 12.8 0,0072

15 0 137.9 20.0 83.4 12.1 0.0071

16 0 151.7 22.0 84.1 12.2 0.0061

17 0 166.9 24.2 82.0 11.9 0.0057

18 0 151.0 21.9 86.9 12.6 0.0053

19 0 163.4 23.7 87.6 12.7 0.0055

20 0 163.7 23.6 86.9 12.6 0.0061

AVG 156.3 22.7 84.8 12.3 0.0061

17.3 2.5 3.6 0.5 0.0008

21 1000 142.0 20.6 84.1 12.2 0.0062
22 1000 134.4 19.5 80.0 11.6 0.0071

23 1000 137.9 20.0 84.1 12.2 0.0063

24 1000 126.9 18.4 84.1 12.2 0.0067

25 1000 162.0 23.5 84.1 12.2 0.0065

26 1000 141.3 20.5 83.4 12.1 0.0066

27 1000 129.6 18.8 84.1 12.2 0.0061
28 1000 182.0 26.4 86.9 12.6 0.0060
29 1000 156.5 22.7 84.8 12.3 0.0062

30 1000 142.0 20.6 86.2 12.5 0.0060
AVG - 145.5 21.1 84.2 12.2 0.0064

STDETD 16.8 2.4 1.8 0.3 0.0004
DFV
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Compression Tests

The first three room temperature compression specimens were strain-gaged and
loaded in a four point bending (Figure 44). Their stress-strain plots are
shown in Figures 45, 46, and 47. A tested and an untested compression specimen
are shown together in Figure 48.

The first specimen was tested four times before it failed because the limits
set on the strain recording instruments were exceeded three times. Each time a
strain limit was exceeded the specimen was brought back to zero load and the
strain instrumentation adjusted before resuming the test. When the strain limit
was exceeded the strain reading was lost, so the magnitude of permanent set at
zero load was also lost. Therefore, the graph of specimen #11 plotted all four
runs as starting from zero longitudinal strain. The presence of permanent set
in specimen 11 can be surmised from the graph of specimen 12's response to multi-
ple loadings, Figure 46. Having determined the maximum strain settings for the
instrumentation from specimen 11, specimen 12 was loaded up to 521MPa (75,525
psi), then unloaded to 174 MPa (25,175 psi), loaded to 1041 MPa (151,050 psi),
unloaded back to 174 MPa (25,175 psi), loaded to 1388 MPa (201,400 psi), unloaded
back to 174 MPa (25,175 psi), then finally loaded to failure at 1875 MPa

(271,890 psi). It is apparent that most of the permanent set occurred in the
first loading amounting to 0.0024 cm/cm, or 12.5% of the total strain to failure.
As with the tension specimens, the modulus varied with load, higher near zero
stress and lower at higher stresses.

The stress-strain plots of the remaining seven room temperature compression
specimens are shown in Figures 49 through 55. The strain data for these speci-
mens was obtained with an extensometer rather than with strain gages. Apparently
the two strain measuring techniques are not equivalent because the slopes, or
moduli, determined from the stress-strain curves of the former were about 25%
greater than those of-the latter. The calculated compression strengths of all
room temperature specimens tested are summarized in Table 5, and the primary and
secondary moduli together with the maximum strain gage readings are summarized

in Table 6. Comparing the tension and compression tests data obtained from strain
gaged specimens listed in Tables 3, 4, 5, and 6, the compression strengths and strains
at failure are more than three times greater, the primarily moduli are approximately
9% less, the secondary moduli are approximately 12% greater. The ratio of primarily
to secondary moduli for tension and compression tests is 1.75 and 1.40, respectively.
Observation of the failed compression specimens (Figure 56) indicated that when fail-
ure occurred it was very catastrophic with a massive combination of crushing and
shearing of the aluminum matrix.and buckling of the filaments.

The results of the room temperature tests of the 10 specimens aged at 505K
(450'F) for 1000 hours are also shown in Tables 5 and 6. The averages reflect a
slight decrease in moduli, compression strengths, and strain at failure from the
room temperature tests, but only on the order of 3 to 10%. The stress-strain
curves for the 1000 hour-aged specimens are shown in Figures 57 to 66.

The 10 elevated temperature specimens were originally to be tested at 505K
(450'F), but after the first five experienced adhesive failures at that tempera-
ture, the test temperature was lowered to 422K (3000 F). As can be seen in Table
5, the 422K (3000F) temperature raised the adhesive strength somewhat, but not
sufficiently to produce a consistently good boron/aluminum failure. The calcu-
lated stresses for the boron/aluminum (when the adhesive failed) are still quite
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TABLE 5
RESULTS OF COMPRESSION TESTS AT ROOM TEMPERATURE, ELEVATED TEMPERATURE,
AND AT ROOM TEMPERATURE AFTER 1000 HOURS AGING AT 505K (4500 F)
(BORON/ALUMINUM - 900,450,900,00,-45o,0°,-45o,0,900,450,900)

U L T I MAT E C O M P R E SS S I O N S T RE N G T H I N 900 D I R E C T I 0 N

AT ROOM TEMPERATURE AT ELEVATED TEMPERATURE AT ROOM TEMPERATURE AFTER AGING
1000 HOURS AT 505K (450 F)

SPEC FAILURE TEST FAILURE FAILURE
NO MPa PSI MODE SPEC NO TEMP MPa PSI MODE SPEC NO MPa' PSI MODE

11 1868.3 270,974 1 1 505K 1076.0 156,064 4 21 1704.4 247,207 1
12 1874.6 27i,890 1 2 (4500 F) .911.0 132,128 5 22 1524.9 221,163 2
13 1900.6 275,660 1 3 860.4 124,787 5 23 1542.7 223,755 4
14 1850.9 268,454 1 4 940.4 136,402 5. 24 1444.9 209,564 3
15 1920.8 275,977 1 5 If 836.2 121,280 5 25 1845.4 267,652 1
16 1726.0 250,339 1 6 422K 1025.3 148,704 4 26 1261.4 182,946 2
17 1576.7* 228,683* 4 7 (3000 F) 1095.3 158,858 4 27 1922.0 278,763 1
18 1767.9 256,415 2 8 1207.5 175,126 5 28 1855.2 269,07C 2
19 1902.0 275,862 1 9 1207.0 175,063 2 29 1669.7 242,176 1

20 1973.8 286,270 2 10 1126.3 163,358 5 30 1862.0 270,056 T

AVG 1865.0 270,204 AVG 505K 924.8 134,130 AVG 1663.3 241,235

STD DEV 76.4 10,866 93.9 13,626 216 .371
AVG 422K 1132,3 164,221

STD DEV 77.6-11,256

NOTES: * Data not used in calculation of average

FAILURE MODE 1 - Compression Failure of B/Al between Load Points 3 - B/A1 failure outside of Load Points
2 - B/A1 failure at Load Point 4 - Adhesive failure under B/Al Face

5 - Adhesive failure under Steel Face



TABLE 6

MODULUS OF ELASTICITY AND STRAIN AT FAILURE FROM
COMPRESSION TESTS AT ROOM TEMPERATURE AND AT ROOM
TEMPERATURE AFTER AGING 1000 HOURS AT 505K(450

0 F)

(BORON/ALUMINUM-90
0 ,450 ,900,0,-450,00,-450,00,

900,450,900)

(SPECIMENS LOADED IN 900 DIRECTION)

SPEC AGING AT PRIMARY MODULUS SECONDARY MODULUS STRAIN AT

NO 505K FAILURE

(4500F) PSI PSI
HOURS GPa GPa

11 0 145.5 21.lxlO6  91.7 13.3x10 6  0.0190'

12 0 131.7 19.1 94.5 13.7 0.0191

13 0 120.7 17.5 97.9 14.2 0.0191

14 0 116.5 16.9 80.7 11.7 0.0216

15 0 106.2 15.4 82.7 12.0 0.0217

16 0 102.0 14.8 81.4 11.8 0.0202

17 0 104.8 15.3 82.7 12.0 0.0174

18 0 104.2 15.4 78.6 11.4 0.0198

19 0 106.9 15.5 80.7 11.7 0.0216

20 0 102.0 14.8 78.6 11.4 0.0227

AVG 114.1 16.6 85.0 12.3 0.0202

STD DEV - la.7 2.1 7.0 1.0 0.0016

21 1000 106.2 15.4x10 6  83.4 12.1x10 6  0.0188

22 1000 94.5 13.7 75.8 11.0 0.0176

23 1000 102.7 14.9 82.7 12.0 0.0170

24 1000 95.8 13.9 77.9 11.3 0.0164

25 1000 111.7 16.2 83.4 12.1 0.0204

26 1000 109.6 15.9 82.7 12.0 0.0133

27 1000 95.8 13.9 79.3 11.5 0.0202

28 000uuu 96.5 14.0 82.7 12.0 0.0212

29 1000 102.0 14.8 81.4 11.8 0.0189

30 1000 106.9 15.5 79.3 11.5 0.0215

AVG 102.2 14.8 80.9 11.7 0.0185

STD DEV 6.3 0.9 2.6 3.8 0.0025

22



high compared to the tension strength, averaging 924.8MPa (134,130 psi) for the
505K (450'F) compression tests and 1132MPa (164,221 psi) for the 422K(3000F)
compression tests.

To obtain information on the Poisson's ratio of the boron aluminum composites
tested in compression specimens 11, 12, and 13 were instrumented with longitudi-
nal and lateral strain gages. This data is shown in Figure 67. As in the case
of most of the tensile Poisson's ratio curves shown in Figures 40, 41, 42, and 43,
some of the compression Poisson's ratio curves were obtained after the specimens
had been loaded and unloaded several times prior to plotting of the data. Although
there was considerable difference between the curves of the three specimens, the
trend (as with the tension Poisson's ratio curves) that appeared was that during
initial loading the Poisson's ratio started low and increased asymptotically to
a .constant value. Whereas this value was about 0.2 in the case of the tension
Poisson curves, it was considerably higher (ie; from 0.29 to 0.34) in the case of
the compression Poisson curves.

Rail Shear Tests

The room and elevated temperature rail shear specimen test results are given
in Table 7. It was found that the elevated temperature adhesive, HT424, was good
only for about 9.65Pa (1400 psi) shear at 505 K (4500 F), so the steel rails
sheared off before the boron/aluminum failed. Knowing that the adhesive's
strength would increase with lower temperatures, the sixth specimen was tested at
422 K (300 0 F). Since the adhesive still failed before the boron/aluminum (although
at a higher adhesive stress than at 505 K (4500 F)), the test temperature was
lowered to 394 K (2500 F). Although the adhesive shear strength again improved,
it still was insufficient to fail the boron/aluminum, so the test temperature was
reduced to 367 K (200°F), and a.boron/aluminum failure was achieved with two of
the remaining three specimens at that temperature. Figure 68 shows two specimens,
8 and 10. Specimen 10 is on the left and is typical of the specimens with adhesive
failure. #8, on the right, displays the failure of the boron/aluminum. A close-up
of 8 is shown in Figure 69. This failure.apparently traversed along one rail bond-
line edge and then jumped to the other edge along a 450 plane at about the middle of
the specimen. It, too, is typical of those specimens which failed in the boron/
aluminum. SEM observation of the failure surface along the bondline edge (Figure
70) indicated that the 0O and 906 fibers failed in shear whereas some of the 450
fibers failed in tension at the interface between the fibers and the aluminum matrix.

The room temperature rail shear specimens using a different adhesive, Hysol
EA951, all failed the boron/aluminum. The average boron/aluminum shear stress at
failure was 338.7MPa (49,131 psi). The first three specimens tested were strain-
gaged and their stress-strain curves are shown in Figures 71-73. The shear modulus
at higher stresses is seen to be approximately 17.2 GPa (2.5 x 106 psi), and at
lower stresses to be about 41.4GPa (6 x 106 psi).

The primary and secondary slopes or moduli taken from the shear specimens shown
in Figures 71 through 73 together with the maximum strains are summarized in Table 8.
As with the tensile test results summarized in Table 4, the primary moduli were
approximately twice as high as the secondary moduli. The magnitude of the shear
moduli, however, were only about a quarter of the respective tensile moduli.

To determine whether unloading before failure in shear resulted in a similar
"permanent set" as in the case of the tension and compression, one of the specimens
(#13) was unloaded before failure and reloaded again. This permanent set was
approximately one quarter of the shear strain prior to unloading.
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TABLE 7

RESULTS OF RAIL SHEAR TESTS AT ROOM TEMPERATURE, ELEVATED
TEMPERATURE AND AT ROOM TEMPERATURE AFTER 1000 HOURS AT
505 K (4500F)

(BORON/ALUMINUM-900 ,450,900,0 ,-450,00 ;450,00,900,450,90 )

(SPECIMENS LOADED PARALLEL TO 900 DIRECTION

ULTIMATE RAIL SHEAR STRENGTH

AT ROOM TEMP AFTER AGING
AT ROOM TEMPERATURE AT ELEVATED TEMPERATURE 1000 HRS AT 505K .(4500F)

SPEC PSI SPEC TEST SPEC MPa
NO. MPa NO. TEMP MPa PSI NO. PSI

1 294.1 42,658 11 505 K 216.3 31,371* 21 282.4 40,964

2 302.3 43,849 12 (4500F) 219.1 31,781* 22 289.5 41,986

3 380.3 55,158 13 228.2 33,097* 23 307.6 44,614

4 300.8 43,625 14 230.3 33,401* 24 289.6 42,002

5 361.2 52,390 15 I 199.1 28,875* 25 362.3 52,552

6 342.7 49,702 16 422K 250.9 36,391* 26 284.0 41,194
(300°F)

7 359.1 52,083 17 394K 271.6 39,395* 299.8 299.8 43,487
(2500F)

8 362.5 52,579 18 367K 285.2 41,362 28 301.6 43,737
(2009F)

9 376.2 54,563 19 i 299.6 43,448 29 274.6 39,826

10 308.2 44,706 20 4 247:3 35,874* 30 269.2 39,047

AVG 338.7 49,131 AVG 367K 292.4 42,405 AVG 296.1 42,941
(2000F

33.9 4,911 10.2 1,475 26.2 3,797

* Cohesive failure of adhesive; boron/aluminum did not fail,
Data not used in calculation of average
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Interlaminar Shear Tests

Table 8 summarizes the results of the room temperature interlaminar shear tests.
Specimens #1 and #2 were tested with the testing jig set at a span of 8.13mm
(0.32 inch) which is representative of a 4 to l'span to thickness ratio. Because
both specimens failed in tension rather than interlaminar shear, the jig was ad-
justed to its minimum span of 6.35mm (0.25 inch) which is representative of a 3
to 1 span to thickness ratio. Most of the remaining specimens failed at slightly
higher loads, but the failures were still all tensile rather than interlaminar
shear. It was concluded that because the specimens were so thin and because the
fiber orientations were varied rather than unidirectional, it would not be pos-
sible to induce an interlaminar shear failure prior to tensile failure. Conse-
quently, the shear stresses reported in Table 8 are on the low bound. Neverthe-
less, the magnitudes of the calculated stresses reported were appropriately high
and were in the range of values normal for unidirectional boron/aluminum compo-
sites.

Table 8 also summarizes the results of the interlaminar shear tests at'505K
(4500 F) and at room temperature after the specimens had been aged 1000 hours at
505K (450OF). As in the case of the room temperature tests, all specimens
failed in tension rather than interlaminar shear, even though the span was kept
at the minimum 6.35mm (0.25 inch). Comparison of the average interlaminar shear
strength values of Table 8 indicate that the reductions from room temperature
strengths were modest, ie; about 20% after 1000 hours aging at _505Ki(4500F)
and about 30% while at 505K (4500F).

Bolt Bearing Tests

The bolt bearing test specimen, as shown in Figure 9, consisted of a 2.86cm
(1 1/8 inch) wide by 10.16cm (4 inch) long strip of 2.03mm (0.08 inch) thick
boron/aluminum mechanically fastened to two strips of 2.86cm (1 1/8 .inch) wide
by 10.16cm (4 inch) long by 1.02mm (0.04 inch) thick titanium. This specimen
was gripped and pulled in tension until one of the two fastened ends failed,
after which the remaining two fastened pieces were regripped and pulled in
tension until the other fastened end failed. Two different fastener sizes and
types were tested, ie; 3.97 and 4.76mm (5/32 and 3/16 inch) titanium Hi-Loks.
The 20 results of the 10 specimens tested are summarized in Table 9. The first
fastener failure load of each of the specimens was designated as "A" and the
second as "B". Test scatter of similar specimens was low and the preloading
that the "B" laps received when the "A' laps failed did not seem to reduce their
values. The average failure load of the 3.972mm (5/32 inch) Hi-Lok fastened
specimens was 636.5N (1431 pounds) and the corresponding average failure load of
the 4.762mm (3/16 inch) Hi-Lok fastened specimens was 7,353N (1653 pounds). The
typical mode of failure of most of the specimens is illustrated in Figure 74.
When the ultimate load was reached, two tension cracks simultaneously started at
location"A". This increasing crack length rapidly raised the tensile stress at
location "B" until a second crack started in a direction perpendicular to the
first two cracks. When the specimens finally failed, the two square corners
around the hole were completely torn from the specimen ends and the Hi-Lok fas-
tener had been pulled out.
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TABLE 8

RESULTS OF INTERLAMINAR SHEAR TESTS AT ROOM
TEMPERATURE, 505K (450°F), AND AT ROOM
TEMPERATURE AFTER 1000 HOURS AGING AT
505K (450 0 F)

(BORON/ALUMINUM-900 ,450 ,900,0 ,-45',0 ,-450
00,900,450,900)

INTERLAMINAR SHEAR STRENGTH (1)

AT ROOM TEMPERATURE AT 505K (4500F) AT ROOM TEMP AFTER
1000 HRS AT 505K (4500 F)

SPEC SPEC SPEC
NO. MPa PSI NO. MPa PSI NO. MPa PSI

1 123.3(2) 17,878(2) 11 91.1 13,214 21 107.6 15,611

2 121.1(2) 17,568(2) 12 81.9 11,879 22 110.3 -16,000

3 127.2(3) 18,449(3) 13 89.4 12,961 23 105.0 15,228

4 132.0 19,152 14 88.5 12,830 24 105.3 15,278

5 132.3 19,195 15 89.7 13,009 25 99.9 14,494

6 132.7 19,242 16 89.7 13,005 26 98.7 14,313

7 132.6 19,236 17 86.5 12,547 27 103.2 14,965

8 124.4 18,048 18 88.1 12,785 28 103.7 15,036

9 122.0 17,692 19 82.6 11,974 29 94.9 13j759

10 131.7 19,098 20 88.5 12,841 30 107.4 15,584

AVG 129.4(4) 18,764(4) AVG 87.6. 12,705 AVG 103.6 15,027

4.3 616 3.2 . 446 4.6 675
DEV

NOTES: (1) Shear stress was calculated from formula, FS = 0.75 P/wt

(2) For these two tests, the simple beam span was 8.128mm(0.32 in)

(3) For specimens #3 to #30 inclusive, the simple beam span
was reduced to 6.35mm(0.25 in), which was the minimum
obtainable with available equipment

(4) This average interlaminar shear stress is for specimen #3
through #10 only
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TABLE 9

RESULTS OF BOLT BEARING TESTS

TITANIUM HI-LOK
SIZE FAILURE LOADSIZE

SPEC
NO. mm in N lb

IA 3.97 5/32 6343 1426

IB 6583 1480

2A 6263' 1408

2B 6236 1402

3A 6405 1440

38 6389 1436

4A 6343 1426

48 6485 1458

5A 6085 1368

5B 6512 1464

AVG 6364 1431
STDSTD 146 33

6A 4.76 3/16 '7117 1600

6B 7206 1620

7A 7633 1716

7B 7784 1750

8A 7579 1704

8B 7330 1648

9A 7482 1682

9B 7562 1700

1IOA 7277 1636

108 7001 1574

AVG 7397 1663
S 250 56

DEV
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Additional examination of the failed specimens indicated that because single
lap joints undergo considerable bending at the fastener by the time they fail,
the head of the Hi-Lok fastener left a severe dent in the surface of the boron/
aluminum composite. Scanning electron microscope (SEM) pictures (Figure 75) of
this area demonstrated that the denting produced severe crushing damage of the
surface layers of filaments.

To obtain a comparison of the bolt bearing strength of boron/aluminum compo-
site with that of titanium, two of the undamaged strips of titanium were
bolted together with a 4.762mm(3/16 inch) titanium Hi-Lok and then pulled
until failure occurred. The failure load for the 1.016mm (0.04 inch)
thick titanium strip specimen was 7517N (1690 pounds). This value compared
closely with the 7397 (1663 pounds) average for the boron/aluminum specimens
with the same fastener but of course the titanium was only half as thick as
the boron/aluminum.

Tension Fatigue Tests
Tenson fatigue tests were conducted on boron aluminum specimens which were
2.54cm (1.00 inch) wide and contained a 4.775mm (0.188 inch). hole in their
centers. The R value (ie; minimum stress to maximum .stress ratio) for all
specimens was 0.1. Two of the specimens Were tested statically in tension
to obtain the first point on the S-N fatigue.curve and the strengths of
these together with the cycled test data are summarized in Table 10 and
Figure 76. At a stress of 242.8MPa (35,222 psi), which represented 66.6
percent of the 364.5MPa (52,867 psi) average:of the statically tested
specimens, the number of cycles to failure-exceeded the desired 106 cycle
limit and hence this stress was determined-to be -the "fatigue-strength" of
the material. One of these two specimens reached 3,139,000 cycles before
failure occurred (in the bonded steel extension plates, Figure 77). All
the other specimens failed in tension at the minimum cross-sectional area
in the vicinity of the hole. It was interesting to observe that in all
of the specimens cracks appeared at the.edges of the hole even after a
relatively low number of cycles, but after progressing only about 0.794mm
(1/32 inch), a second pair of cracks opened up, as shown i:n.Figure78 -, in
a direction parallel to the load and grew progressively longer-until cata-
strophic failure occurred when the cracks again turned .perpendicular to
the load.
It was theorized that the cracks perpendicular to the loading direction
occurred first because of the local damage to the longitudinal fibers just
under the surface, at the edges of the holes produced by the hole punching
process, ie; see Figures 13, 14, 15, and 16. Subsequent fatigue loading then
produced cracks parallel to the loading direction in the aluminum because of
differential straining between those boron fibers, which were broken and hence
supported no tensile load, and those that were not broken and hence produced
a high stress concentrated load.
SEM photos were taken of the fractured surface of Specimen 2 which wa's tested
statically to failure (Figure 79) and the fractured surface of Specimen 3
(Figure 80) which was cycled 2,362,000 times at a maximum alternating tensile
stress of 242.8MPa(35,222 psi). Whereas the former showed clean, sharp,
splits across filaments as well as the matrix, the latter showed a fragmented,
worn, surface at the edges of the hole as the cracks gradually spread from
fiber to fiber.

28



TABLE 10

RESULTS OF FATIGUE TESTS OF 2.54cm (1.00 inch) WIDE
TENSION SPECIMENS WITH A 4.775mm (0.188 inch) HOLE
IN THE CENTER

SPECIMENS LOADED IN 00 DIRECTION

BORON/ALUMINUM 90,45',900 ,0° ,-450,0o,-45-,0',9 0 ,
450,900

SPEC STRESSSPEC STRESS CYCLES TO FAILURE
NO. MPa PSI

1 365.8 53,058 Tested statically to failure

2 363.2 52,676 Tested statically to failure

3 242.8 35,222 2,362,000

4 242.8 35,222 3,139,000 *

5 291.6 42,300 210,000

6 291.6 42,300 178,000

7 328.2 47,600 300

8 311.6 45,200 59,000

9 273-.7 39,700 453,000

10 255.1 37,000 394,000

* Failed in Grip at Bearing Hole
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Summary of Demonstration Test Data

Table 11 contains the minimum values of the demonstration tests summarized

in this section and has therefore been labeled "Suggested Material

Properties".

The original aft pylon skin panel was made of commercially pure titanium

(annealed with Ftu = 551.6MPa (80,000 psi)). Table 12 gives a comparison

between the material properties for this titanium derived from Mil-Hdbk-5B

and the results of Table 11 for the particular substituted boron/aluminum

composite.

Figure 81 gives a comparison of the fatigue properties for commercially

pure titanium (annealed with Ftu = 551.6MPa (80,000 psi)) derived from

the fatigue properties of Ti-8A1-1Mo-IV titanium taken from Mil-Hdbk-5B

and the fatigue properties of the particular substituted boron/alumi.num
composite.

COMPONENT FABRICATION

This section contains the description of the fabrication of the boron/

aluminum skin components, their assembly onto the substructure, and the

associated quality'control and non-destructive testing that was exercised

to ensure the quality of the components. From records of the time and

material expended, a cost analysis of the fabrication of the four boron/

aluminum component skins was conducted and a comparison made with the

existing titanium skins. Of the four boron/aluminum skins received,

three were used for flight service demonstration tests and the fourth,

was delivered to NASA Langley Research Center for storage and possible

installation at a later date.

Fabrication Plan

After the fabrication developments described in Section II and the component

design drawings described in Section III were completed, the Fabrication

Plan (included as Appendix C) was prepared. This plan contained the exact

details of the fabrication of the skins as well as the punching, trimming, and
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TABLE 11

SUGGESTED MATERIAL PROPERTIES OF
BORON/ALUMINUM COMPOSITE WITH 90,
450, 900, 00, -450, 00, -450, 00,
900, 450, 900 FILAMENT ORIENTATION (a)

ROOM TEMPERATURE AT 505K AT ROOM TEMP AFTER
MATERIAL (4500F) 1000 HRS AT 505K

PROPERTY MPa PSI MPa PSI MPa PSI

Ftu 470.9 68,296 557.5 80,856 529.9 76,851

Fcy 1726.0 250,339 836.2 121,280 1704.4 247,207

Fsu(In-Plane) 294.1 42,658 >230.3 > 33,401 269.2 39,047

Fsu (Inter-
laminar) >122.0 >17,692 >81.9 >11,879 >:94.9 >13,759

F 4.76mm
(3/16 in) 723.5 104,933

TENSION
FATIGUEFATIGUE 242.8 35,222STRENGTH
K = 2.52

(a) All properties except fatigue were measured in the 900
direction. Fatigue specimens were loaded in the 00 direction.
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TABLE 12

MATERIAL PROPERTIES OF BORON/ALUMINUM COMPOSITE WITH
900, 450, 900, 00, -450, 00, -450, 00, 90° , 450, 900

FILAMENT ORIENTATION COMPARED WITH COMMERCIALLY PURE
TITANIUM

(PROPERTIES MEASURED IN 900 DIRECTION)

BORON/ALUMINUM COMPOSITE COMMERCIALLY PURE TITANIUM

MATERIAL ROOM TEMP AT 505 K (4500F) ROOM TEMP AT 505K (4500F)

PROPERTY MPa PSI MPa PSI MPa PSI MPa PSI

Ftu 470.9 68,296 557.5 80,856 551.6 80,000 297.9 43,200

F 1726.0 250,339 836.2 121,280 482.6 70,000 217.2 31,500

Fsu(In-Plane )  294.1 42,658 >230.3 >33,401 289.6 42,000 171.0 24,800

Fsu(Interlaminar) , 122.0 . 17,692 > 81.9 >11,879 289.6 42,000 171.0 24,800

F 4.76mm 710.2 103,000 - - 827.4 120,000 496.4 72,000
bru (3/16 in)

Etu 79,300 11.5 x 10 - 106,869 15.5 x 106
x to to

193,700 28.1 x 106

Ecu 78,600 11.4 x 10 - - 110,316 16.0 x 106
x to to

145,500 21.1 x 106

17,099 2.48 x 106 - 44,816 6.5 x 106
G to to

42,265 6.13 x 10



mechanical fastener installation of the skins onto the internal structure.
This plan and the drawing were in turn translated by planning engineers into
Fabrication Orders which were detailed, step-by-step instruction sheets to be
followed by the assigned production technician and approved at each step by
the cognizant engineer. As changes evolved after the Fabrication Orders were
written, Engineering Orders were prepared instructing and authorizing the
changes so the Fabrication Orders, at all times, were kept current.

QC and NDT

When the first two boron/aluminum skins were received and visually inspected,
it was determined that one was acceptable but that the other had numerous
surface blemishes on both sides (Figure 82). This had been caused, according
to the supplier, by a reaction between a graphite release agent left on the
part during its trimming and the liquid coolant used during cutting. In
spite of its cosmetic appearance, however, this panel's tension test QC results
were entirely satisfactory and no premature specimen failures were initiated
by the surface blemishes. Initially, it was planned that the fabricator,
Hamilton Standard, would supply another panel to replace the blemished one,
but because the aft pylon production schedule could not be delayed and the
replacement skin schedule could not be accelerated, the rejection of this
skin by Inspection was overruled by its acceptance by Engineering and it was
used for the production of the second aft pylon skin.

Both skins had been ultrasonically C-scan inspected by means of the process
described in Appendix A. Although the blemished panel had no voids, some
voids were detected in one corner of the unblemished panel. Fortunately, it
was possible to so'orient this panel that these voids were entirely removed
when the diagonal cut across the corner (Figure 83) was made and so it too
was accepted for production of the first aft pylon skin.

When the third boron/aluminum skin was received, its appearance and ultra-
sonic C-scan NDT results were satisfactory, but Hamilton Standard had reported
that their QC tension tests of specimens cut from the piAnel were low in the
900 layup direction, ie; 379.2MPa (55,000 psi) instead of the 503.3MPa
(73,000 psi) target property specified in the procurement document Appendix A.
To check Hamilton Standard's claim that the low results were attributable to
poor specimen quality (the material for the tests being taken from the edge
of the panel) and that the rest of the panel was satisfactory, additional
specimens were fabricated and tested by Douglas. When these specimen strengths
met the target tensile strength of Appendix A, this panel was accepted for
production of the third aft pylon.skin.

When the fourth panel was received, its NDT and QC results satisfactorily met
the requirements of Appendix A, and it was accepted for production as the
spare fourth aft pylon skin for NASA's retention.

Composite Skin Fabrication and Installation

After each of the four skins were accepted for production, they were cut to
the correct outline and their holes were located and punched (Figure 84) in
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accordance with the Manufacturing Plan outlined in Appendix C, and the trim-
ming and hole preparation processes described in Appendix B. Both surfaces
were alodined and the interior surface was painted with FR epoxy primer.
Each skin was then given to the production department where its holes were
used as a template to drill the holes in the substructure. After installing
the boron/aluminum skin onto the substructure (Figure 85), the remaining
aluminum skins were also added (Figure 86). When the entire aft pylon was
fabricated, it was delivered to the paint shop where it was cleaned and its
aluminum skins were painted with the United Airlines characteristic blue and
white colors. In accordance with the painting drawing, since the engine
exhaust and heat would scorch and discolor the lower titanium panels, these
are normally left unpainted and hence, the boron/aluminum substitutes wre
also left unpainted. To preclude the possibility that during their five
year service, the boron/aluminum skins might be damaged, discarded, and
replaced by United Airlines service personnel,both sides were lettered with
the words "BORON/ALUMINUM COMPOSITE PROPERTY

OF DOUGLAS AIRCRAFT COMPANY, IF
DAMAGED, NOTIFY NEAREST DOUGLAS
REPRESENTATIVE FOR DISPOSITION".

COST ANALYSIS

Direct labor manhours actually expended for the fabrication of each of the
three boron/aluminum composite aft pylon skins were as follows:

1. Trimming and cutting - 8 manhours
2. Punching-holes - 6 manhours
3. Alodining and priming - 2 manhours
4. Inspection - 1 manhour

Total 17 manhours

Because this total does not include the cost of direct labor supervisory and
other support personnel, it is customary to multiply it by a factor of 1.8 to
obtain the true total manhour cost, ie;

17 x 1.8 = 30.6 manhours

This total is obviously very high, even for the first to the third new part.
However, it was not an object of this program to develop low cost fabricating
approaches or to emphasize cost competitiveness between boron/aluminum compo-
sites and titanium. This total cost should therefore not be considered as
representative of typical fabrication costs of other similar applications.
Furthermore, as a simple flat skin with a number of holes, it does not repre-
sent a particularly sophisticated application from which much extrapolation
can be made to the prediction of costs of more complicated metal composite
structures.

At $496/Kg ($225/lb) each of the as received blanks of boron/aluminum weigh-
ing 2.125Kg (4.68 lb) cost $1,053. This material cost included tensile spec.
imen QC testing and C-scan ultrasonic NDT testing. When machined to final
dimensions, the boron/aluminum skin weighed 1.566Kg (3.45 lb). Hence, the
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actual finished material cost was

$1053 1.566Kg = $672/Kg or

$1053 3.45 lbs = $305/1b

This actual material cost is also very high and no possibility of any reason-
able comparison with similar costs of finished titanium skins exists.

FLIGHT TESTS

This section briefly describes the flight service demonstration testing that
will follow in June 1975, after delivery of the three (3) particular DC-10
aircraft to United Airlines that include the three (3) boron/aluminum compo-
site aft.pylon skins.

1. Flight Service Demonstration Tests

These tests will include the installation, periodic inspection, flight
testing, removal and replacement of the three aft pylon boron/aluminum
skins with the present titanium skins. With the delivery of the three
DC-10 aircraft into flight service in July! 1975, the scheduled five-
year demonstration test will continue until July 1980.

2. Skin Inspection and.NDT

During the five-year flight service demonstration period, yearly visual
inspections of the three boron/aluminum skins will be conducted at the
participating airlines maintenance facilities. These in-service checks
will be scheduled to coincide with the regularly scheduled maintenance
checks. Of particular concern will be the inspection of possible delam-
inations, fatigue cracks, evidences of erosion, corrosion, or overheating.

3. Skin Replacement

At the conclusion of the five-year period of exposure, Douglas will
arrange for the removal of the three boron/aluminum skins and the replace-
ment of the original titanium skins.

4. Skin Shipment to NASA

After visual and non-destructive inspection by Douglas, the three exposed
boron/aluminum skins will be shipped to NASA Langley for further examina-
tion and any other desired testing.
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CONCLUSIONS

1. The structural adequacy of the boron/aluminum skin panel was demonstrated

by the satisfactory results of the structural tests designed to simulate

operating environmental extremes for the aft pylon of the DC-10 aircraft.

The performances of the boron/aluminum material in compression and in

fatigue were particularly noteworthy.

2. Based on the fabrication of the specimens and the four skin panels, the
fabrication methods developed were shown to be suitable for the intended

application. From a manufacturing standpoint, the methods of fabricating
flat skins have sufficient growth potential to apply to larger and.more
complicated aircraft structural areas.

3. Although the saving of weight was not an objective of the program, the
substitution of a boron/aluminum skin panel for a similar sized titanium

panel resulted in a weight saving of 26%. No attempt was made to develop
tooling or fabrication techniques that would result in lower casts.
As a result, the manufacturing and material costs for boron/aluminum were
not comparable in a complementary manner with those for titanium.

4. Examination of tension, compression, and shear data of cross-plied boron/
aluminum specimens indicated considerable nonlinearity in its stress/
strain curves and the retention of significant "permanent set" when it had

been loaded and unloaded. Since such nonlinearity and permanent set is

undesirable from a structural application standpoint, it is recommended

that suitable material and fabrication approaches be developed to reduce

this inelastic'behavior.
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Figure 1. DC-10 Tail Pylon
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2.54cm (10.00 in)

10.16cm (4.00 in) -- 7.62cm (3.00 in)

5.08cm -
(2.00 in).

1 2.54cm*
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_ 1.27/2.54mm (.005/.010 in)
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WITH HYSOL EA951 FOR RT TEST

3. DIMENSIONS NOTED THUS (*) TO BE
TAKEN IN TEST SECTION AND RECORDED
BEFORE TEST

4. FABRICATION STANDARDS PER APPENDIX B
5. FABRICATE BORON/ALUMINUM PER APPENDIX A

Figure 6. Specimen Assembly - Modified IITRI Tension Test
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3.175 - 0.102mm 6.35-0.051mm 4.064mm(.160 in) STOCK
(1/8-0.004 in) (1/4-0.002 in)
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GENERAL NOTES:

1:. FABRICATE BORON/ALUMINUM PER APPENDIX A -

2. HT TR -7 SHEET 4340 STEEL FACING 125-145 KSI

3. FABRICATION STANDARDS PER APPENDIX B

4. DIMENSIONS NOTED THUS (*) TO BE RECORDED
BEFORE BONDING. DIMENSIONS NOTED THUS (**)
TO BE RECORDED BEFORE TESTING. DIMENSIONS
ARE TO BE TAKEN IN TEST REGION.

5. BOND -3 and -5 TO -7 AND -9 WITH HT424 FOR ELEVATED TEMPERATURE TEST
WITH METLBOND 329 FOR RT TEST

Figure 7. Specimen Assembly-,Composite Honeycomb Sandwich Beam Test
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7.747mm (305 in)
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6.35mm (1.25 in)
(.25 in)R - 4 6.096
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2 PLCS 1.52 c GRAIN DIRECTION FOR 3 BORON/ALUMINUM
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4. MARK -3 AND -4 RAILS A AND B AS SHOWN TO INDICATE MATCHED PAIRS.
5. TOOLING FIXTURE REQUIRED DURING BONDING TO MAINTAIN DISTANCE

BETWEEN -3 AND -4 RAILS AND TO LOCATE MATCHED PAIRS OF -3 AND
-4 RAILS.

6. FABRICATE -3 AND -4 RAILS FROM 4130 STEEL PLATE

Figure 8. Specimen Assembly-Composite Rail Shear Test
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6.35mm
(.25 in) 90c

GENERAL NOTES

1. FABRICATION STANDARDS PER APPENDIX B
2. DIMENSIONS NOTED THUS (*) TO BE

RECORDED BEFORE TEST.
3. FABRICATE PER APPENDIX A

Figure 9. Specimen - Composite Interlaminar Shear Test
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0NOTE 5 FOR 3.969mm(5/32 in) FASTENER
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00 90
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BEFORE TESTING.
3. INSTALL HI-LOKS PER S7933651-11
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6. 3.518 .1385
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7. HLT334-4-2 HI-LOK WITH MS21043-06 NUT AND AN960C6 WASHER.
8. DIMENSION A is 0.793cm (0.312 in) FOR 3.969mm(5/32 in) FASTENER AND

1.113cm(0.438 in) FOR 4.763mm(3/16 in) FASTENER

Figure 10. Composite Specimen - Bolt Bearing Test
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Figure 11 Specimen-Composite Tensile Fatigue Test
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Figure 12 Cutting Boron/Aluminum with Diamond Coated Wheel
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Figure 15 Hole Produced by 5.664cm(0.223 in) Diameter Steel Punch
Followed by 5.791mm(.228 in) Diameter Steel Ream
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Figure 16 Hole Produced by 6.350mm(0.250 in) Diameter Steel Punch
Followed by 6.401mm(0.252 in) Diameter Diamond Ream
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Figure 44 Four Point Bending Honeycomb Sandwich Compression Test
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Figure 69 Failed Rail Shear Specimen
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Figure 74 Mode of Failure of Bolt Bearing Specimen
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Figure 75 SEM Pictures of Bolt Bearing Specimen
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Figure 77 Failed Fatigue Specimen
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Figure 78 Fatigue Crack at Edge of Hole in Fatigue Specimen
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Figure 79 SEM Pictures of Fatigue Specimen 2 Tested Statically in
Tension to Failure
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Figure 80 SEM Pictures of Fatigue Specimen 3. (failed on the
2,362,000th cycle of a Maximum Alternating Tensile
Stress of 242.8MPa (35,222 psi)
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Figure 81 Fatigue Properties Comparison
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Figure 82 Surface Blemishes on Second Boron/Aluminum Aft Pylon Skin
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Figure 83 Boron/Aluminum Aft Pylon Skin-Edges and Corner Trimmed
and Holes Punched
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Figure 84 Punching Holes in Boron/Aluminum Skin
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Figure 85 Installation of the Boron/Aluminum Skin Onto the Substructure

123



Figure 86 Installation of the Aluminum Upper Skins Onto the Substructure
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APPENDIX A - MATERIAL PROCUREMENT DIFFUSION BONDED
BORON/ALUMINUM COMPOSITE SHEETS

Material shall meet the following requirements:

1) Material

The material shall be furnished as composite flat sheet formed by diffus-

ion bonding boron filaments and aluminum alloy foil such that the fila-

ments are solidly embedded in the aluminum alloy matrix.

The boron filaments shall be 0.1422mm (0.0056 inch) diameter and shall

meet the requirements of MMS-583, Class C. The aluminum alloy shall be

6061. The finished product shall be furnished in the as-fabricated con-

dition.

2) Composition

The composition of the composite sheet shall be 45 volume percent (mini-

mum) boron filament, the balance being aluminum alloy.

3) Composite Construction and Quantities

All panels shall be constructed such that the boron filaments are 
oriented

as shown in Figure Al. All panels shall have a ply orientation pattern

of 90', 450, 900, 00, -450, 00, -450, 0° , 90', 450, and 900. Ply orienta-

tions are defined in Figure Al with the 900 orientation lying 
in a direc-

tion parallel to the fibers in the first ply.

Panels A through J (10 panels) shall consist of 11 total plies, and be

2.032mm (0.080 inch) thick.

4) Sizes

Panels A through F shall be 29.21 x 57.15cm (11 1/2 x 22 1/2 inch).

Panels G through J shall be 172.72 x 20.32cm (68 x 8 inch). (NOTE: The

900 orientation is always parallel to the second dimension).

5) Filament and Ply Alignment

All filaments comprising a single ply shall be laid parallel one to

another within one degree of the long axis of the ply.

All plies of a given orientation shall be laid down such that the fibers

are parallel within one degree of the required nominal 
orientation.

Cross-plies in the completed panel shall be oriented such that they are

within one degree of the designated orientation.
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6) Dimensional Tolerances

All dimensional tolerances shall be specified in FED-STD-245 as applicable
to 6061 aluminum sheet.

7) Mechanical Properties

The material shall exhibit the following target mechanical properties:

00 Orientation 900 Orientation

Tensile ultimate strength 393 MPa (57,000 psi 503.3MPa (73,000 psi)

Tensile Modulus of Elasticity 162 GPa (23.5x10 6 psi) 168.9 GPa (24.5x106 psi)

Tests shall be conducted in either the 0* or 900 orientations, in accord-
ance with ASTM E8. Rectangular specimens may be used in lieu of reduced
section specimens. A minimum of two tests per pressing shall be conducted
in order to certify that the target mechanical properties have been met.
The test specimens shall be cut from the panels to be delivered. The test
specimens representing Panels G, H, I, and J shall be tested in the 900
orientation. (NOTE: Material for performing these tests has not been

included in the sizes shown in Figure Al and there-
fore, the fabricated width would have to be greater
to accommodate a row of tensile QC coupons).

8) Nondestructive Inspection

A through-transmission ultrasonic inspection shall be performed and a C-
scan generated of two panels (each from separate pressing) from A through
F by the supplier per attached instructions. Other inspections shall be
performed as necessary by the supplier to ensure that the material com-
plies with the workmanship requirements.

9) Identification

All panels shall be appropriately marked to indicate panel identification.

10) Workmanship Requirements

The material shall be of uniform quality and condition, free from exposed
filaments, protruding filament ends, and burrs.

The surfaces shall be free from cracks, folds, wrinkles, laps, edge delam-
inations, foreign objects and other defects which would adversely affect
the serviceability of the material. Light scratches, heat marks, inden-
tations or other surface defects which can be removed without exceeding
material specifications shall not be cause for rejection.

The material shall be essentially free from internal voids, delamination,
crossed filament, filament misalignment and foreign matter.
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11) Responsibility for Inspection and Testing

The supplier is responsible for the performance of all inspection and
test requirements specified herein. The supplier may use his own facil-
ities or any commercial laboratory acceptable to McDonnell Douglas Cor-
poration. McDonnell Douglas Corporation reserves the right to repeat
any or all of the inspections set forth herein and reject any material
which does not conform to the prescribed requirements.

NDI METHODS FOR Al/B PANELS

Ultrasonic C-Scan Inspection - Composite specimens shall be ultrasonically
C-scanned for voids or delaminations. Immersion ultrasonic methods employing
an X-Y bridge scanner and facsimile paper recorder shall be used. Inspection
may be conducted at 5.0 to 10.0 MHz whichever is most applicable for the
thickness of part being tested. Search units shall be short or medium focused
elements, 1.27 to 1.91cm (1/2 to 3/4 inch) diameter. The panels are to be
tested using through transmission plate methods. Panels should be as flat as
possible prior to ultrasonic inspection. The amplitude of the ultrasonic
signal shall be set to 80% of vertical saturation over the best area of each
panel. The amplitude gate shall be set around the transmitted signal for
through-transmission (ie; 40% amplitude or less). The mode shall be set so
areas with amplitudes above 40% will record on the paper.

Place a reference marker (lead tape or steel button approximately 6.35mm
(1/4 inch) diameter or X-ray penetrameter) on the upper left hand surface of
the part to be tested so that the location of discontinuities in the part can
be correlated with indications on the facsimile recordings, where the part
dimensions preclude the scanning and recordings of the entire part in one
C-scan recording, overlap reference markers shall be imaged on two adjacent
C-scan recordings. The reference marker shall be in the same positions for
both C-scan inspections.

C-scan facsimile recordings are to be shipped with specimens and are to be
identifiable to each specimen. The specimen identification, date, inspection
technique, and each unit size and frequency shall be indicated on the facsim-
ile recording. Location of all reference markers shall also appear on the
specimen surface.
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Figure Al Panel Description
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APPENDIX B

DPS 3.67 - 67 HOLE PREPARATION

AND TRIMMING OF BORON/ALUMINUM
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.DOUGLAS PROCESS STANDARD

DPS 3.67-67 HOLE PREPARATION
AND TRIMMING OF BORON/ALUMINUM

A. SCOPE AND USE

This Process Standard provides the instructions and requirements for prep-

aration of attachment holes and edge trimming of boron/aluminum composite

sheet. It shall be used only when specified on Engineering Rework Draw-

ing AVB7129.

B. APPLICABLE SPECIFICATIONS

DPS 3.02 - Identification of Parts and Assemblies

DPS 4.025- Dissimilar Materials Protection
DPS 4.710- Minimum Fabrication Practices for Metals

C. MATERIALS AND SPECIAL EQUIPMENT

DPM NO. MATERIAL NAME SPECIFICATION OR PRODUCT
SOURCE

5126 Paper Abrasive Silicon Finishing Carborundum Company
Fastcut Finishing Paper Los Angeles, Ca (1)

5417 Lubricant, DAC Lube Stick Kerns United Company

5739 Lubricant Metalworking Oil, Cut, Cincinnati Milling Products

Solvent, Cimcool Five Star Div, Los Angeles, Ca

- Tap Magic Cutting Fluid The Steco Corporation
Little Rock, Ar

-Punches-HSS Steel, with Prick Tip DAC Stock Items

- Reamers-HSS Multiple Flute Reamers DAC Stock Items

- Punch Press-Diacro #2 Bench Press,
Manually Operated, with Punch
Adapter-Whitney-Jensen "Junior"
Hand Punch DAC Stock Items

(DPM's are Douglas stock numbers for internal company use only).

FOOTNOTE: (1) Contact Douglas buyer for alternate approved products or

sources.

D. HOLE PREPARATION REQUIREMENTS

1. Holes shall be punched (maximum material thickness 2.286mm(.090 in)

to final size with a Diacro #2 bench press, manually operated, with

punch adapter or Whitney-Jensen "Junior" hand punch.

2. To minimize hole distortion and allow the boron fibers to shear free

of burrs, punch shall be manually operated rather than machine driven

to slow down punch speed.
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D. Continued

3. Punches shall be checked frequently for wear. To minimize wear,

apply DAC lub stick (DPM 5417) around the outer periphery of entry
point on the male die.

4. Holes that are undersize due to punch wear can be reamed to final

size with multiple flute type reamers.

5. Punches shall be kept sharp to prevent undersize holes and protruding
burrs.

6. Tap magic cutting fluid shall be applied on reamer when holes neces-

sitate reaming.

7. Reamer shall be operated at 350 to 500 rpm. A continuous 50-65cm/min

(20-25 in/min) feed rate shall be applied during the ream operation

to reduce premature dulling of reamer.

8. Edge of holes (protruding burrs) shall be deburred with silicone-
carbide paper or a steel mill file.

9. Refer to DPS 4.025 for dissimilar materials protection.

E. EDGE TRIMMING REQUIREMENTS

1. Trimming shall be accomplished with a diamond impregnated cutting
wheel, operated at 1500 to 2000 rpm. Do not operate at slower speeds.

2. Metalworking lubricant (DPM 5739) shall be mixed at a ratio of one

part lubricant to 30 parts water and shall be used to flood the wheel/

work interface to prevent heat build-up and diamond sparking.

3. Part to be trimmed shall be set-up within the milling machine coolant

tray. Coolant must be contained within the tray to avoid abrasive

injury to machine sliding surfaces. Clamp part down to prevent dis-
tortion.

4. Appearance of as-trimmed edges should be clean and not exceeding

maximum of 0.762mm (0.030 inch) protruding burrs on both top and
bottom edges. Burrs shall be removed with a mill type file. (Refer-
ence DPS 4.710). Burrs protruding above.0.762mm (0.030 inch) indi-
cates wheel is not cutting properly, and work should be corrected.

5. To retain material identification, parts shall be labeled immediately

after edge trim per DPS 3.02.
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APPENDIX C

MANUFACTURING PLAN FOR

BORON/ALUMINUM AFT PYLON SKIN

AVB7097-30
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Fabrication and Assembly of Boron/Aluminum Aft Pylon Skin AVB7097-30

General Plan

A skin of 6AI-4V titanium is presently used on production DC-10 aircraft in

the aft pylon structure over the #2 engine. The skin is subjected to high

temperatures during service. The object of this program is to substitute a

skin of boron/aluminum material for the titanium to determine the long-term

effects of actual service conditions on the boron/aluminum. The skins will

be removed from the aircraft after five years of service for analysis and

evaluation. A total of four parts will be fabricated, with one part
installed on each of three separate production DC-10 aircraft and one part
sent to NASA as a spare.

The intent of the Manufacturing Plan is to provide an outline of fabrication

and assembly steps similar to the planning papers normally used at Douglas
but with further explanation about correct techniques and tools required to

produce the parts.

General Machining and Hole Preparation

Boron/aluminum composite material requires special cutting and hole prepara-
tion processing to produce high quality components with maximum strength

potentials. These mechanical operations have been documented in a Douglas
Process Standard (DPS 3.67-67) and Manufacturing Engineering-Research and

Development memos. The most important aspects of cutting and hole preparation

are summarized as follows:

1) All cutting of boron/aluminum shall be accomplished with the Accurate

Diamond Tool Company, sintered diamond slotted wheel operating at a

minimum of 1524SMPM (5000 SFPM) (1500 rpm for 35.56cm (14 inch) diameter

wheel). The wheel/work interface shall be flooded with Cimcool 5 Star

coolant at approximately 30:1 water-coolant concentration.

2) As the products of the cut are extremely abrasive, the special coolant

pumping system, work piece holding tray and the tooling department 
#8

horizontal mill have been designated for boron/aluminum use exclusively.

3) Hole generation shall be accomplished by punching to full-size using

special punches in the Manufacturing Development Center with the 
Diacro

#2 manual punch press. All punches have a conical tip to pick up trans-

fer punch indentations for accurate hole locations. High speed steel

(HSS) reamers shall be used on the boron/aluminum to bring hole diameters

to drawing requirements when less than 0.127mm (0.005 inch) undersize.
A lubricant such as Tap Magic shall be used during reaming operations.

Fabrication of Skin AVB7097-30

1) Boron/aluminum sheet 2.032mm (0.080 inch) thick, 20.32 x 172.72cm (8 x
68 inch) long shall be supplied by outside sources to the Manufacturing
Development Center. This material shall be completely diffusion bonded

and ready for layout and subsequent trimming to final net dimensions. An

existing steel template, AFB70972-29,-30, shall be used to mark part
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profile and to locate all attachment holes by transfer punching through
6.35mm (0.250 inch) diameter tooling holes. Light scribe lines shall be
made through prussion blue marking dye to provide guidelines for trimming
without damaging the part.

2) Each part shall be cut in the horizontal mill using the impregnated dia-
mond wheel specified previously. Dowel pins positioned on the cutting
bed plate shall be used as stops to align cut edges accurately, maintain-
ing continuity on interrupted cuts. A total of four straight cuts shall
be made on each part. The corner radius shall be generated by hand grind-
ing the part to scribe lines using a silicone-carbide wheel.

3) The modified Diacro manual punch has been setup with full-sized punches
and dies sized with 0.051mm (0.002 inch) diameter clearance. The work-
piece shall be placed under the punch so transfer punch indentations can
be aligned with the conical tip on the punch. Every hole shall be pro-
duced with a lubricated punch which reduces friction and prevents alumi-
num build-up on the punch.

4) Burrs on the exit side of the hole shall be removed by lightly touching
the hole edge with a diamond impregnated reamer with 90' included angle
bevels on the reamer end. Reamer speed shall be 400-500 rpm.

5) After edge trimming and hole punching, the part will be ready for fabri-
cation inspection prior to installation on the aircraft subassembly.

Assembly Procedures

1) The boron/aluminum skin shall be positioned on the titanium substructure
and clamped in place. Preliminary tooling holes shall be drilled along
the periphery of the skin from previously punched holes. Drill bushings
fitted into the full-size attachmen t holes in the boron/aluminum skin
shall be used to assure accurate alignment of holes. Standard Cleco
clamps shall be installed to secure the skin to the substructure during
drilling of pilot holes in the titanium details.

2) Number 30 pilot holes shall be drilled into the titanium from each of
the skin holes, using the boron/aluminum skin as a drill template.

3. The boron/aluminum skin shall then be removed from the titanium sub-
structure. All holes shall be opened to full-size per drawing require-
ments by drilling and reaming with conventional tools.

4) The skin shall be repositioned on the substructure and mechanical attach-
ments shall be installed from the forward end of the structure working
aft.

The boron/aluminum skin (LH side) shall be installed on the substructure
before the RH side titanium skin to permit accessibility for nut instal-
lations. The standard RH titanium skin (AVB7097-29) shall then be
installed per normal production practice.
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5) AVB7097-30 is fabricated as a flat skin. The pylon assembly has a slight
curvature to which the skin will conform. No separate forming operations

shall be performed.
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